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Bootstrap Percolation in a Polluted Environment 
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Let a low density p of sites on the lattice Z'- be occupied, remove a proportion 
q of them, and call tile remaining sites empty. Then update this configuration 
in discrete time by iteration of the following synchronous rule: an empty site 
becomes occupied by contact with at least two occupied nearest neighbors, 
while occupied and removed sites never change their states. If q/p2 is large most 
sites remain unoccupied Ibrever, while if q/p2 is small, this dynamics eventually 
makes most sites occupied. This demonstrates how sensitive the usual bootstrap 
percolation rule (the q = 0 case) is to the pollution of space. 
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1. I N T R O D U C T I O N  

In this paper we consider a two-dimensional cellular automaton ~, which 
we call bootstrap percolation in a polluted environment (BPPE). Its state 
space is {0, 1, 2} z-', hence every site x can at time t be either 0 (empty), 
1 (occupied), or 2 (removed). The very simple update rule is given as 
follows: 

(BPPE1) I f ~ , ( x ) > 0 ,  then ~,+,(x)=~,(x). 

(BPPE2) If ~: ,(x)=0 and there exist y~ 4:y~ so that [ Ix -y~[ l~=  
[ Ix -  y2llt = 1 and ~,(Yl) = ~,(Yz) = 1, then ~,+ i(x) = 1. 

(BPPE3) Otherwise, ~ ,+~(x)=0.  

The initial state ~0 is a product measure specified by parameters p 
and q which measure the densities of l's and 2's, i.e., P(~o(x)= I ) =  p, 
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P((.(x)=2)=q, and P ( ~ , ( x ) = 0 ) = l - p - q .  Since every site changes 
state at most once, there exists a limiting configuration ~ which assigns 
to every site x its final state ~. ,~ (x). 

The standard bootstrap percolation rule is obtained by taking q = 0. It 
has been extensively studied, together with various related models (see 
ref. 1 for a nice survey). One of the fundamental properties of this case is that 
there is no phase transition: ~.~. - 1 for every p > 0. ~ H ~,~ Many researchers 
have thus focused on studying the phase transition properties of JhTite 
systems, ~2" ~' ~-~ on metastability issues of infinite systems, ~2 7~ and on rates 
of convergence towards occupancy, c34~ One important  result c2~ is that the 
bootstrap percolation rule on a large L • L square experiences a phase 
transition from very sparse final occupancy to full final occupancy as p In L 
changes from small to large. Our  aim is to demonstrate that BPPE on the 
entire Z 2 provides another natural context in which the bootstrap percola- 
tion dynamics experience a similar phase change, this time as q/p2 changes 
from large to small. To make this more precise, we say that a set S c  Z 2 
percolates if there exists an infinite self avoiding nearest-neighbor path 
contained in S. Then we define, for every fixed q > 0, 

p,.(q) = sup{p:  {~, = 1} does not percolate} 

We now state our main result. 

T h e o r e m  1.1. There exist finite positive constants ct and c, so 
that: 

(1) 

(2) 

(3) 

Ifq<ctp'-, then P ( ~ , ( x ) =  1)--* 1 a s p s 0 .  

If q < e2p 2, then P(~ .,. (x) = 1 ) ~ 0 as p ~ 0. 

c ~ l : < l i m i n f ,  l~0 q 12p,.(q)<~limsup,/_o q I_'p,.(q)~<cl 12 

Theorem 1.1 quantifies how sensitive the bootstrap percolation rule is 
to the pollution of space by 2's. Assume that the density q of removed sites 
is fixed, and very low but positive, while p is the varying parameter. Then 
~,  is very far from total occupancy i fp  is relatively small; in fact ~ �9 con- 
sists almost entirely of O's i fp  is smaller than a constant times x /~ . 'On the 
other hand, the system hardly feels the pollution when p is larger than 
another constant times x//-q. We call the latter regime supercritical and the 
former subcritical. As the described phase transition happens when p is on 
the order of x/q, it should be readily detectable even for small values of q, 
although appropriate simulations require huge arrays (of exponential size 
in 1/p) due to rare nucleation. 

We suspect that there exists a number  c so that, for every e > 0 ,  
( 1 )-(3) in Theorem 1.1 hold with c j = c -  e and c~ = c + e. Proving this 



Bootstrap Percolation in a Polluted Environment 917 

I 
O . 

~ 1 4 9  

B e B m 

% 

, , 2  
~  

o ~  i 

�9 �9 

�9 �9 

~  o 

�9 �9 

Fig. I. A fixated state of tile BPPE dynamics. 

r igorously seems to be beyond  our  current techniques.  Neither  have we 
done  e n o u g h  statistical analysis  o f  s imulat ions  to confidently conjecture a 
precise value o f  c. However ,  Fig. 1 does  provide a "critical" picture of  a 
150 • 120 system with 1 boundary  condi t ions  (which are chosen  to sidestep 
nucleat ion issues) (grey pixels represent co lor  1, while black pixels repre- 
sent co lor  2). In the s imulat ion,  q = 0.01 was kept constant ,  and p = 0.0238 
was the largest density for which the final percentage of  occupied sites was 
be low 1/2. While the size o f  this s imulat ion is much  too  small  to give a 
g o o d  est imate for c, it does  illustrate h o w  growth o f  l's is s topped by 2's: 
the boundary  o f  the final "frame" of  l's is what  we later call a blocking loop. 
It is not  hard to find a mean-field mode l  for existence o f  long blocking 
loops  [ see  (3 .1)] ,  which  gives an idea about  where the q/p2 scaling comes  
from. 

To provide an even more  transparent explanat ion,  we n o w  give a 
simple argument  which shows  that, for any e > 0 ,  q<p2+,: implies that 
P ( ~  (x)  = 1 ) converges  to 1 as p -~ 0. Let N = [_ l/p ~ +': 3A, and call x ~ Z 2 
N-good if the ( 2 N  + 1 ) x ( 2 N  + 1 ) square S,. centered at ( 2 N  + 1 ) x contains  
no 2 and at least one  1 in each o f  its rows and columns.  Let cg be the 
connected  c o m p o n e n t  o f  N - g o o d  sites which includes the origin and G the 
event that cg includes a site x for which all sites in S,- are initially in the 
state 1. Then note  that 

P(xisnotN-good)<<.(2N+l)2q+2(2N+l)e-~2N+l~"~O as p + 0  
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Therefore p(cff is infinite) converges to 1. However, P(G)>1 P(~ is infinite) 
and G c { ~ ..... (0) = 1 } (since l's from the square filled with them spread to 
S,. for all xeC~), thus P ( ~ . ( 0 ) =  1) also converges to 1. 

In conclusion, we briefly comment on two closely related models. The 
first one is usually called the modified bootstrap rule, and is defined by 
replacing (BPPE2) with the following: 

(BPPE2')  If ~,(x) = 0, and there exist y~ and Y2 so that I Ix -  ),~ II, = 
IIx-)'_,[l~ = Ilyt-3'21L.~_ = 1 and ~,(yt)=~,(y2)= 1, then 
~,+.(x) = 1. 

Since it is harder for l's to grow in this case, a sufficient condition for 
the subcritical regime is given by Theorem 1.1 (2). However, the methods 
from Section 2 do not apply, so we have to rely on the more robust argu- 
ment in the previous paragraph to get a sufficient condition for the super- 
critical regime. We suspect, but are currently unable to prove, that in this 
case the scaling differs from q/p'- by a logarithmic correction. 

Although BPPE is interesting in its own right, our interest in it was 
sparked by our previous work in competition of growth models. ~ A ver- 
sion of the multitype threshold voter model ( M T V M )  ~', on state space 
{0, 1, 2} z-" can be defined by making the rules (MTVM1) and (MTVM3) 
identical to (BPPE1) and (BPPE3), respectively, and adding: 

(MTVM2) If ~' ,(x)=0, and there exit a unique k e  { 1, 2} such that 
there are Yl • Y2 with [ Ix -  Yl lit = I [ x -  Y2 II, = 1 and 
~',(Yl) = d.',(y2) = k, then ~', + l(x) = k. 

The two nonzero colors of MTVM hence grow over 0's using the 
bootstrap percolation rule and their competition leads to a standoff 
wherever they meet. Assume that the l's and 2's start off equally matched: 

t . the initial state is a product measure with P(d.o(.x)= I ) =  P(~_{,(x)= 2 ) = p  
for some small p > 0. In refs. 7 and 8 we studied supercritical growth 
models extensively; we showed that they have no trouble overcoming a low 
density of removed sites, and that competition between them results in a 
tessellation of the available space. By contrast, the growth model studied 
here is critical; although it shares some features of the supercritical ones, 
namely rare nucleation and asymptotic shape, ~9' ~0~ the results from ref. 8 
fail to hold as testified by Theorem 1.1 and its consequences, one of which 
is stated below. 

Corollary 1.2. Asp--*0,  P(~ , . ( .x )#0)  0. 

The rest of this paper contains the proof of Theorem 1.1. In Section 2 
we prove part (1) and the upper bound in (3), while Section 3 establishes 
the remaining bounds. 
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2. THE SUPERCRIT ICAL REGIME 

In this section we assume that  q = c~ p2 for a very small c~. By obvious  
monotonic i ty ,  the results will hold for all smaller  q. We want  to establish 
that  l 's  in the final state ~ ,  have a very high density and percolate.  To  
this end, it is necessary to identify the type of pa th  which can block the 
growth  of  a cluster of  l 's. We call a loop a self-avoiding sequence of sites 
I: xo, x j ,  x_, ..... x,, = x o  such tha t  Ilxi-.x'i_ ,ll =_ = 1, i =  1 ..... n. Natural ly ,  n 
will be called the length of  such loop, and we assume that  .x'~ are numbered  
so that  we travel on it in the counterclockwise direction. For  technical 
reasons we will call a loop also a doubly  infinite sequence .... .x'_ ~, x0, xt .... 
with some arb i t ra ry  choice of  direction. The  fanened loop fat(l) is obta ined  
by adding a site to the right of  the loop at every d iagonal  move:  if 
I Ix ,  + ,  - xe[I ,  = 2, add y to the right of  the loop with I l y - x ,  ll ~ = 
I I ) ' - xe+~  lit = I and expand the loop to .... .x'~, ),,.x'~+~ ..... A fattened loop 
hence ends up mak ing  no diagonal  moves,  but  m a y  no longer be self- 
avoiding. A thick loop is a sequence of  sites 1: xo, .x'~, .x- 2 ..... .x',, = x o  such 
that  IIx~-x~_tl l~,  i = 1  ..... n, and is such that  it makes  no U-turns,  i.e., 
.x'~.x';+ 2 for i = 0  ..... n - 2 .  We also require that  a thick loop never crosses 
itself, a l though it can retrace a par t  of  itself once ( that  is, some sites can be 
visited twice). 

A leJ't (resp. right) blocking loop l' is a thick loop such that  the follow- 
ing hold: 

(BL1) All sites on l '  which are 1 at t ime t = 0  are preceded by a 2 
and succeeded by a 2. 

(BL2) I f / '  makes  a left turn (resp. a right turn)  at x~, i.e., x~+~-.x'~ 
is a 90-degree (resp. a - 9 0 - d e g r e e )  ro ta t ion  of  x ; - . x ' i _  ~, then 
there is a site y such that  G o ( y ) = 2  and I l x e - y l l ~ _  ~< l. 

(BL3) All the 2's used in (BL2) are used only once; that  is, there is 
a one- to-one  ass ignment  of  described sites y to every left turn 
(resp. right turn).  

We start  with two geometr ic  l emmas  

L e m m a  2 .1 .  Assume that  ~.o(x) = 1, and that  the connected compo-  
nent of  .x- in { ~  = 1 } does not percolate.  Then  there exists a finite right 
blocking loop sur rounding  x. 

Proos Start  by the loop l which consists entirely of  O's and 2's in ~ ,  
includes x in its interior, is minimal  with respect to the set of  sites it con- 
tains inside, and is also of  minimal  length. Then arbi t rar i ly  pick a first site 
on ! and proceed to successively eliminate d iagonal  turns in the direction 
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of the loop. In this process,  we may  encoun te r  one of  the 11 cases, depic ted  
in Fig. 2. 

The d iagona l  move to be e l imina ted  is d rawn,  and  all poss ible  next 
moves. The symbol  []  denotes  sites on the loop  I and  the single a r rows 
indicate the di rect ion of  1. The  doub le  a r rows  indicate  the di rect ion of  

1 [ ]  ~ [ ]  
('a~e L. "l" ~:" Case 7. 

1 [ ]  1 

('a.~e 2. 

Case 3. 

Case 4. 
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Fig. 2. Eliminating diagonal turns of/. 
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Fig. 3. Right turns of L 

fat(l). Those sites which are labeled by a number must be in a specified 
state in ~ ,  and • indicates that a site can either be a 0 or a 2. For 
example, in case 1, the three l 's are there because the number of sites 
inside l cannot be reduced, and this forces a 2 between the two l's. (Note 
how this argument breaks down for the modified bootstrap rule in cases 1 
and 2.) Right turns may be created by this procedure, but in every case 
there is a 2 sufficiently close to satisfy (BL2). Also, as we can see from cases 
3, 5, 7, 9, and 11, (BLI)  is satisfied. 

Furthermore, in the case / itself makes a right turn, the local con- 
figuration must be as in Fig. 3. 

The elimination of diagonal turns may result in creating a non-self- 
avoiding loop. Even more, a U-turn may be created in the three cases 
depicted in Fig. 4 (other cases are rotation or mirror images of these). 

In these cases, we just throw away the "dangling end" in the loop. 
Again, a right turn may be created this way, but in all such cases again 
there is a 2 sufficiently close. Finally, (BL3) is clearly satisfied. | 

We omit the similar proof  of the next lemma. 

L e m m a  2.2. Assume that {{~ = 1} percolates and that ~ , ( x ) = 0 .  
Then either there exists a finite left blocking loop around x or there exists 
an infinite blocking loop somewhere in Z-'. 

From now on, we denote by C the "generic constant," a positive 
number whose value is not important and changes from one appearance to 
another. We will also assume without loss of generality, that 1/p is an even 
integer. 

[] [] [] [] 

1 [] 1 1 [] 1 

1 [] 

[] [] 

[] 

Fig. 4. Local configurations at U-turns. 
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Lemma 2.3. For  all N>~p -3, P (there exists a right blocking loop 
surrounding 0 and contained outside [ - N ,  N]  2) ~< e -~  

Proof. Assume that a right blocking loop l '  surrounding 0 and con- 
tained outside [ - N ,  N]  2 exists. Now let r be the number of right turns this 
loop makes. Then it must make 1"+4 left turns (since it is a loop with 
winding number  1). We identify the turn by the site at which it is made. 
The cost of a right turn is at least 9q. Now take a site on l '  which is at 
[]'11-,~ distance at least 2 from the set of right turns of /'. The cost of 
such a site together with the preceding and succeeding sites is at least 
1 - p  + 2q < 1 -  p/2. Of course, we have to take into the account the fact 
that any such site may be visited twice. Using the fact that, for any ~ >~ 0, 

t n �9 e k  ~ ~ n  supo ~k ~<,,~ k; O -~ e , we then get that the probability that such an I exists 
is bounded above by 

(,,)(,,) 17. 9"q"( 1 
,,>~N ,.=o r r + 4  

~ n.  ~-, {n ' ) {  9q ,~,..2 

,,>~,v ,.=o~ \ ( l - p / 2 ) 2 5 J  

n 9q ,~1,.+4v2 

<~ y" Cn2q-2e.,.,/-gl,,e p,,,.12 
n >1 N 

<~ CN2p -5 e -II - t2o ~,., ~ p,v, t2 

(9q) -2 ( 1 - p/2) '''6 + s~ 

which ends the proof. | 

We omit the proof  of next lemma, as it is an easy adaptation of the 
one above. 

Lemma 2.4. With probability one there are no infinite blocking 
loops. 

Lemma 2.5. The probability that there is a finite left blocking loop 
around the origin is bounded above by Cp, 

Proof. Again, if such a loop exists, it must make r right turns and 
i"+ 4 left turns for some r>~ 0. As in the proof  of Lemma 2.3, we can bound 
the probability that such a loop exists by 
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. > 4  , .=o r - { - 4  

Y" CrtZq2e(12o ~Tt- ,,),,/12 

~ Cp4 ~, n2e ( I - - 1 2 0 . j 7 7 )  p, /12 

n >14 

<~ Cp4 . p -  3 

which ends the proof. | 

Proof of (1) and the Upper Bound in (3) in Theorem 1.1. Let H 
be the event that ~_o(X)= 1 for all x ~ [ - p - ~ ,  p-312 and that there is no 
finite right blocking loop surrounding the origin. By Lemma 2.3, 

P ( H ) >  p (2" -~+ ' ) ' - ( I - e  - 0 '  - ' ) > 0  

By Lemma 2.1, H c  {{ r = 1} percolates}. Finally, by the ergodic theorem, 
P ( ~ ,  = 1 percolates) = 1. 

Fur thermore,  by what  we have proved so far, and Lemmas 2.2, 2.4, 
and 2.5, P ( ( ~ ( x ) = O ) < ~ C p .  

3. T H E  S U B C R I T I C A L  R E G I M E  

In this section, we assume that  q = c2p 2 for a large c~ and demonst ra te  
that, for small enough p, l 's  in s ~ have a very low density and do not per- 
colate. Hence we need to show that blocking loops of  previous section are 
quite likely to exist. As is usual in problems of  this type, we resort to a 
compar ison  with an oriented percolation model. Roughly,  the idea is then 
to use the leJ? blocking loops to prevent the l 's  from reaching a typical site 
from the outside, and in addit ion we make these loops short  enough so 
that the dynamics  inside them is unlikely to add many  l 's (in this part  of  
the argument ,  we use methods  from ref. 2). 

To define the percolation model,  fix a positive integer a > 0 (which at 
this point should be thought  of  as a parameter,  a l though we later set 
a = 2 0 0 ) .  As usual, B ~ ( x ,  r) will stand for the discrete ( 2 r +  1) • ( 2 r +  1) 
box centered at x. Call a sequence x0, x~,x2 ...... x-,, an NE-path if the 
following condit ions hold: 

(NEP1)  For  every i>~0 either xi+~ = x i + e j  or xi+~ = x i + e 2 .  

(NEP2)  x i + i = xi  + e 2 for i = 0 ..... a and x~ + i = x~ + e i for i = n - a ..... n. 
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(NEP3) I fx i+ l  =xi+e l  and x i=x i_ l  +% (i= 1, 2,...), then ~.o(xi)=2. 

(NEP4) For every i>~0, 1 CB~(x~, a). 

Such path can be either finite or infinite. The existence of an infinite 
(or a very long) NE-path is equivalent to the survival of the following two- 
particle oriented percolation model: label particles u and r; a u gives birth 
to another u at the site immediately above, an r gives birth to two particles: 
a u immediately above and an r immediately to the right. In addition, a u 
also gives birth to an r immediately to the right if it happens to be on top 
of a 2, while both types of particles die as soon as they come within 
F'--distance a of a 1. A mean-field approximation of such model would be 
governed by the following linear system: 

U ' =  - ( 2 a +  1)2pU+R 
(3.1) 

R' = q U - ( 2 a +  1)2 pR 

In this system, U and R both converge to infinity as time progresses as 
soon as q > ( 2 a +  1)4p z. 

As usual in proving survival of interacting particle systems, an 
appropriate rescaling argument will be a decisive step in completing the 
proof of Theorem 1.1; this is the key point in the proof of our next 
lemma. In its statement, xo is the point (�89 2,0), Yo is the point 
( p - l l  3 --II  I -" 

, ~ p  - ~ p  -), S is the convex hull of the four points (0,0),  
p 2e t, yo+p-2e2, and Yo, and its interior inter(S) are those points in S 
without any nearest neighbors outside S. 

k e m m a  3.1. The probability that there exist an NE-path connect- 
ing xo and Yo which is, apart from x .  and Yo, entirely included in inter(S) 
is at least Cp 2. 

Proof. Fix a small 0c > 0 and let L = l_cc/p]. We will call a site x e Z 2 
a rescaled open site if: 

(ROS) There exists a site z~[Lx+ae2 ,  L x + ( L - l - a )  e2] and a 
sequence of sites xo, x~ ..... x , = z  so that (NEP1), (NEP2), 
and (NEP3) hold, and 1 CB~(xi, a) for i = 0  ..... n - a .  

Claim. Fix an e > 0. Then 0c can be chosen small enough, and then c2 
large enough, so that the conditional probability P (both x+e~ and 
x +  et + e2 are rescaled open sites Ix is a rescaled open site) > / 1 - e .  

To prove the Claim, let z~ [Lx+ae2, Lx+ ( L - 1 - a )  e2] be a site 
which satisfies (ROS). Notice that the condition does not involve sites with 
first coordinate larger than that of Lx. Therefore, we can make sure that 
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x + e t  is a rescaled open site simply by demanding that there is no 1 in 
L Uj=0 (B~z(zq-jel, a) ~(Lx.+ [0, L]2)) .  This happens with probability 

at least l - e / 4  if ~ is small enough. Let z k = z + k ( 2 a + l ) e ~ ,  k =  
1 ..... [_L/(2a+ 1)J, and let Hk be the event that there are no l's in 
[zA., zk +2Le2]  +B._, (0, a). Again, if ct is small enough, P(Hk)>1 3/4, and 
Hk are independent, so that the probability that more than L/(3a) of them 
happen is at least 1 - e / 4  for small p. Let K be the random set of indices 
k such that Hk happens. Let H~. be the event that there is a 2 in 

[ L x  + k(2a + l ) e~ + (5L/4) e2, Lx + k(2a + 1 ) e~ + (7L/4) e2] 

and that HA. happens. If the cardinality of K is at least L/(3a), then there 
are at least L2/(6a) sites where a 2 would make Uk~xH'~- happen. If c2 is 
large enough, then, P(Uk~l,.H'k)>jl-e/4. Finally, assume that ko is the 
smallest k so that H~ happens, and assume that a site 

y ~ [Lx + ko(2a + 1) e~ + (5L/4) e2, Lx + ko(2a + 1 ) e~ + (7L/4) e2] 

has G)(Y)= 2. Then the probability that there is no 1 in 

L 
U (B,,. (y + je,,  a) n (L(x + e 2) + [0, L]2)) 

./= o 

is again at least l - -a/4.  This construction makes both x + e t  and 
x+e~  +e2 resealed open sites with probability at least 1 - e  and thus 
proves the Claim above. 

The Claim essentially says that resealed open sites form a 1-dependent 
oriented site percolation process in which sites are open with probability 
very close to 1. Now let S,. be the set of all sites x so that 
Lx+ [0, L -  112cS .  Moreover, let xo,.=([_�89 1,0)) and yo,.= 
([ .p- t l /Ld_2,  [_(3p-lt_�89 1). Assume that Xo,. is a rescaled 
open site. Let G be the event that xo,. is a rescaled open site and that there 
exists a sequence of rescaled open sites Xo,. = Wo, w~ ..... w,,, = Yo,. ~ S,. such 
that either w~+~=w~+ej or w ~ + l = w ~ + e ~ + e  2 for every i = 0 , . . . , m - 1 .  
A standard contour argument along the lines of ref. 5 (see also ref. 6) then 
establishes that, for a small enough e, P(Glxo,. is a rescaled open site)/> 0.5. 
However, the probability that xo,. is a rescaled open site is at least C. P (at 
least one 2 in xo+[L/4,  3L/4] ez>~Cp). Finally, conditioned on G, the 
probability that Yo is connected to xo by an NE-path described in the state- 
ment is again at least Cp. This ends the proof. | 

Lemma 3.2. LetG.,.betheeventthatsetB~(x,p-~)\B.~_(x, �89 -~)  
contains a left blocking loop l which includes no site in { ~o = 1 } + B~,(O, a). 
Then P(G.,.) >~ 1 - e  -~;'~'. 
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Proof. We can assume that x = O. Take the convex hull of the fol- 
( ~ _ - I  - , I  Jh(0,  I -n lowing four points: ~/J ~, 0), (p 0), (0, �88 , _~p ~), and add its 

reflections across the two axes and across the origin to obtain an annular 
region A. This region can be chopped into Cp 9 concentric annular regions 
of width p-2, each of which (by Lemma 3.1) independently contains a left 
blocking loop with probability Cp s. | 

Take a set A c Z 2 and fix a realization of ~o. Switch all the sites in A '  
to 2 and all the 2's in A to 0. Then run the BPPE dynamics on such a con- 
figuration, and let ~(A) be the set all sites in A which ever become 1. As 
into ref. 2, a set A will be called internally spanned if ~ ( A ) = A .  

Lernrna  3.3. Let G',. be the event that x r ~(B,,.(x, p- t~ ) )  and that 
~ ( B ~ ( x , p  ~)) contain no site outside { ~ o = l } + B . ~ ( 0 , 1 0 0 ) .  Then 
P(GI,~) >/1 - Cp. 

Proof. Again, assume that x = 0. Let 

H~ = {there is an v~B~,(O, 200) with ~r 1} 

H,  = {there exists an internally spanned rectangle inside B~ (0, p - '~) 

with its longest side in [50, 100]} 

In ref. 2 it is proved that (Gg)"c H~ w H2. However, a necessary condition 
for a rectangle to be internally spanned is that every second row and every 
second column must contain at least one 1, and therefore 

P(H 2) <~ Cp -22. P(at least 25 sites with color 1 on 1002 fixed sites) ~< Cp 3 

Moreover, P(HI)~< Cp, and these two estimates end the proof. | 

Proof of  (2) and the Lower Bound in (3} of  Theorem 1.1. Let 
a = 200. Then, if both G,. and G', happen, no site from the outside of the 
blocking loop guaranteed by G,. can influence the dynamics inside it, but 
G',. ensures that the dynamics inside it does not occupy x. Hence 
G., c~ GI,- ~ {~..,(x) # 1 }, thus P(r = 1) ~< Cp, proving (2). 

Let M=�89  -~j and this time call xeZ-"  a rescaled closed site if 
G~z~,t + ~ ,. ~ G'c2M + L~ ,. happens. Then P(x is a rescaled closed site) >/1 - Cp 
and any x, y with [ I x -  Yl[ ~,_ >~ 16 are rescaled closed sites independently. 
Hence, for a small enough p, the complement of the set of resealed closed 
sites does not percolate. Therefore, if {r = 1} were to percolate, an 
infinite nearest neighbor path would have to cross B_,_(x, M) for some 
rescaled closed site x. But such a path would then have to cross the corre- 
sponding left blocking loop, which is impossible, since sites on that loop 
can never become 1. This contradiction ends the proof. ] 
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